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An implicit scheme for the simulation of electrostatic fluid turbulence in a magnetic field 
with spatially varying shear is presented. Large coupling terms representing shear-induced dis- 
sipation are evaluated implicitly to avoid severe timestep restrictions. Step order in the scheme 
is made very important by the added presence of turbulent E x B convection and viscous dis- 
sipation. It is shown that the need to temporally resolve resistive dissipation is only important 
in the regions to which the fluctuations are localised: near the dissipationless resonance layer 
and at small to moderate wavenumbers. Intermittent phenomena at moderate wavenumbers 
are shown to play an important role in the essential physics of the turbulence. This causes the 
need for high spatial resolution, as viscous dissipation must be kept away from the important 
scales. Convergence tests and linear growth rate checks are performed on the scheme. 0 1988 
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I. INTRoDUCT10N 

Collisional drift-waves have at times been thought to contribute to anomalous 
transport in fusion devices, particularly particle transport in tokamaks [ 11. The 
essential mechanism is for convective E x B fluctuations driven by the density 
gradient to combine with density fluctuations in such a way to give rise to a net 
particle flux down the density gradient [2]. This flux must be several orders of 
magnitude larger than that predicted strictly from collisional transport if it is to 
explain the observed transport. The free energy source is the density gradient while 
magnetic shear damping of the associated outward propagating sound waves acts 
as the sink [3]. An additional sink is provided by the resistive dissipation of 
parallel currents. Higher order effects such as toroidicity [4] or coupling to trapped 
electrons [S] are necessary for the waves to be unstable, but these can be modelled 
by an ad hoc driving term in the equations. For the purpose of studying the essen- 
tial physics of the turbulence we consider the model of a sheared slab with a density 
gradient. 

Previous numerical treatments of drift-wave turbulence have tended to make use 
of the adiabatic assumption, in which electrostatic and internal energy in the fluc- 
tuations are equipartitioned by diffusive processes on a time scale fast compared to 
that of the waves, yielding a simplifying relation between the density response and 
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the fluctuating electrostatic potential: n/no = exp(eJ/lT), or for small 
E/n, = e$/T. This is the relation used in the absence of magnetic she 
Hasegawa-Mima equation [6]. It is convenient because the ~rQblern is now 
reduced to one equation, many treatments of which are tractable auaiyti~ally. To 
provide for instability, and a cross-field particle flux, a small phase shift, a,, is 
introduced for each wave [7], so that in wavenumber space one has 

nk e?k 
-=y (1 -id,), 
n0 

henceforth referred to as the “i-delta” treatment. This relation has been used even 
when magnetic shear is included and sound-wave resonant damping gives the treat- 
ment a second equation [S]. The necessary condition for the adiabatic relation is 
(pzv,/p:, kf, Dl,)) 9 o, where pe is the electron gyroradius, p3 is the ion gyrora 
defined using the electron temperature, k,, is the component of the wave~~~ber 
parallel to the equilibrium magnetic field, and D,, = T,/m,v, is the parallel electron 
diffusion coefficient. Since for all but the smallest tokamaks the perpendicular 
diffusion rate is slow compared to the diamagnetic frequency, o, z o, the ~o~di~o~ 
becomes kf, V; 9 WV,, where V, is the electron thermal velocity. 

The problem with the i-delta treatment now becomes immediately obvious, 
because in a real system with shear there is a place where the dominant e is 
resonant, where k,, vanishes. Assuming that k,, is spatially linear near this resonant 
surface this yields an electron conduction channel, of width d, = (0, v,)“‘“/!c;, V,, in 
which the fluctuations are hydrodynamic, i.e., the flow fluctuations are de 
from and not driven by those in the density, although the former can still 
latter. In this region the linear coupling effects, all of which scale with the 
gradient, are small, leaving nonlinear turbulent convection to dominate the plasma 
response to the fluctuating potential. Outside the electron conduction cha 
~~ctuations are adiabatic: any small phase shift would lead to large 
currents (see Ohm’s law in the next section). Thus, one is likely to see ap 
particle flux only in the hydrodynamic regions, even i r a single helicity the elec- 
tron conduction channel is narrow. (Purely adiabatic ctuations yield no particle 
flux.) Clearly, a simple phase relation as in Eq. (1) constant 6,‘s will fail to 
represent the correct physics if both regions are present. The hydrodynamic r 
will be the most important in low-temperature regions such as the tokamak 
as in such regions A,/p, can be large. 

What muse be done numerically is not only to have s time-de~e~~e~~ 
equations for the density and potential, but also to be able t spatially varying 
coupling terms in both equations. Since large shear regions are present, this 
rise to numerical stability problems. Recent treatments with separate densit 
potential evolution avoided this by keeping a constant parallel w 
parallel dissipation was included, but magnetic shear was not [9, 1 
k,, is approximated ,by a constant. The physics problem, of c 
tuations are no longer shear-localised. In the full ~r~b~ern, 
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their maximum values at the edge of a sheared slab, where k,, = k[,xmax. These 
terms become very large indeed if many modes are kept. The problem is not so bad 
if the adiabatic relation is used, for in that case the remaining coupling terms 
involving ion sound waves are much weaker [8]. Presented here is a numerical 
method to evaluate such terms implicitly, separately (split) from other parts of the 
algorithm. The method is useful in any case where large, cancelling terms appear 
linearly to couple two or more equations together. In the next section the model for 
2D drift-wave turbulence is presented. Following this are sections describing the 
numerical algorithm, important questions of resolution not always addressed, iden- 
tification of coherent structures, and complete testing of the algorithm. 

II. THE MODEL 

The basic model for nonlinear drift-wave turbulence in this paper is a 2D sheared 
slab whose coordinate system of unit vectors (2, 9, a) is defined respectively by the 
directions of the density gradient, the fundamental wavevector, k,, and the 
magnetic field at the resonant surface, where k,, = k;, x = 0. The two-fluid Braginskii 
model [l l] is used with the assumptions of electrostatic fluctuations (B = 0), a thin 
resonance layer (k,d, << l), and cold ions (T, < T, = T). The scheme of derivation 
is the same as that used for nonlinear tearing modes and is explained in detail 
elsewhere [12]. One then has Ohm’s law and equations for charge conservation, 
electron continuity, and parallel ion momentum: 

with the last included to provide for the linear damping mechanism of coupling to 
outward-propagating ion sound waves. It is important to include the p,, term as this 
models ion Landau damping of the outgoing waves, which is a major source of 
dissipation. In numerical terms it is necessary to shear-localise the fluctuations so 
they do not appreciably interact with the boundary. Standard notation is used 
throughout, with the convective derivative d/dt - a/at + (c/B)?. (V$x V) and the 
parallel gradient V,, = (x/L,)(d/ay), w h ere L, is the shear length. The tilde refers to 
the fluctuating variables: the background profiles are held fixed so as to focus on 
the nonlinear physics. If X, y, and t are respectively scaled by p, E (A4i/m,)“2 pe, 
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k&l, and o;~? with & fi, and C,, scaled by (T/e)(p,/L,), .~(p,lL,,), and c,(pl,jL,); 
we have the dimensionless system of equations used in this paper: 

an 
at= -v.Vn-~+c-'v;,(rr-b)-~v,,u+o(n), 

s 63) 

where we have dropped the tildes. Here, the second term in Eq. (3) arises from 
the background density gradient, v . v = 2 . (vd, x vj, v: = (a/ax)2 + (fcajayjz, 
V,, = x(d/ay), and D is a perpendicular operator used solely for numerical pu 
to facilitate truncation of the spectrum in k-space. In order to study most 
the character of conservative transfer in the 2D turbulence, we have not in6 
artificial driving. This would enter the density gradient drive term in the xk,- 
representation of Eq. (3) in the form of a multiplier (1 + iyl), for each lth 
This driving is used in linear growth tests since these tend to fail for damped modes, 
which have convergence difficulties associated with the outgoing waves. equations 
(2)-(4) are evolved within a region of width 2x, about the resonant surface and 
periodic in y. 

The parameters are the ratios Cr (d,/p,)’ = (~,/o,)irn,/M,)(L~/L,)’ and 
LJL,, with the parallel diffusion coefficient p=p,, K2/Lfco,. An add~ti~~a~ 
parameter is the minimum wavenumber scale K z k,p,, which appears in the 8: 
operator. The most important of these is C, which determines the electron ~~a~~el 
width. In keeping with tokamak ordering LJL, is taken to be small, and then p is 
chosen to set the sound wave damping point outside the sound wave resonance 
point, LJL,, but within the outside limit of computation, where the fields are 
assumed to vanish. Also, K is taken to be small, but not infinitesimal, as the essen- 
tial structure size is expected to be of order p, in both the x and y directions. The 
diffusion coefficient in D is assumed to be sufficiently small that D has no effect at 
either the largest scales or those at p, sizes. 

III. NUMERICAL ALGORITHM 

Upon examination of Eqs. (2)-(4) it is clear that the most damaging co 
tributions to numerical instability are the V:, terms, proportional in xk,-space to 
12x2 for the lth mode, that is, parallel diffusion by electrons must be resolved by the 
numerical scheme. To see this we consider the simplified system 
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& v:~=c-y(n-qq, (5) 

an 
,,=c-'Vf,(n-g), (6) 

to isolate the effects of these terms. This is the subsystem representing electron 
adiabatisation. The linear numerical stability of Eqs. (5), (6) is determined for one 
mode in &,-space. Time-differencing is done by replacing aflat with (f-f’)/r, 
where z is the timestep and the superscript “0” denotes evaluation at the 
immediately previous step. We replace Vf, with --12.x2, where I is the mode number, 
and Vi with - k2 = -2g/(A.~)~ - 12K2, where Ax is the step size in the x-direction. 
The multiplier g may take on values from $c~(Ax)~/x~ to 2, i.e., we evaluate, the 
finite-differencing in terms of the possible k, values [13]. A purely explicit scheme 
with which to evolve Eqs. (5), (6) may be expressed as 

4J 
0 ( 

= 1 -zL2k -’ zL2k -= 4’ 
n TL2 l--zL2 I 1 iz” ’ 

where L2 = C -rZ2x2. The eigenvalues of the amplification matrix (the 2 x 2 matrix) 
must all lie within the unit circle in the complex plane for the scheme to be stable. 
Evaluation of these eigenvalues shows them to take the values unity or 
y = 1 - zL2( 1 + k-2). Regardless of the value of k, this scheme will be unstable if the 
timestep violates the condition 

z<2L-2=2cl-2x-2. (7) 

This is clearly a catastrophic constraint, since C -‘xi is at least 100 (see the next 
section) and several tens of modes must be kept in order to resolve the turbulent 
structure dynamics. 

In contrast to this, the main contributor to the timestep limit in 2D elec- 
tromagnetic codes is the parallel AlfvCn wave, whose equation sets the double time 
derivative against the V$ operator: 

a2 ++v2 9 II’ 

or, upon finite time-differencing, 

However, in the case of drift waves there is only one time derivative balancing the 
parallel diffusion terms: here we have 

1 - ++ 12x2, 
z 
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an extra factor of Ix worse, leading to the timestep constraint given in Eq. (7). In 
the i-delta treatment the problem does not arise: there are no Vt, terms because t 
cancel in the derivation of the Hasegawa-Mima equation (subtracting Eq. (2) from 
Eq. (3)) [6]. This leaves only the single V,, operator in the sound-wave co 
terms, and these are multiplied by a small coefficient. In the constant-k,, case 
is neither x- nor k,-dependence to the coupling terms, so the restriction of E 
is largely eliminated. For shear-flow problems with magnetic shear it is a s 
matter to evaluate the offending term at the current time step as it does not couple 
to another equation. One need only invert the operator 

as a tridiagonal matrix. The tridiagonal is necessary because both the gradient an 
the spatial dependence enter squared, so that Fourier transforming does not he1 

The problem with Eqs. (2)-(4) is that the Vf, terms (shear terms) couple PLO 
equations. To evaluate them in an implicit manner requires a folded manipulation 
in which n is eliminated in favor of c$, the resulting equation for d, is solved, and 
then the scheme is “unfolded” by solving for the new n in terms of the new 4. These 
are used to get the new V:q5 without operating with with Vl. In the complete 
scheme the timestep is split, as the nonlinear convection and D operators are each 
handled separately from the part dealing with the shear terms. Thus, the scheme is 
necessarily only first-order accurate in the timestep, as terms of second order in z 
are discarded. 

We illustrate the new method once again using Eqs. (.5), (6), without the sound 
waves, to show that the Vf, terms are stabilised. From the implicit evaluation of the 
shear terms, 

(where the superscript ‘“0” refers to the previous time step) we first solve for z to 
obtain 

n=n”+zL2d 
lfrL2 . 

This is then used to eliminate n in the &equation: 

( &-VI B=& > no -V: 4”. 

Evaluating the finite-differencing as before, this scheme may be expressed in 
form as 



120 BRUCE D. SCOTT 

1 ZL2 - ~ 
0 

;= 

i 1+zL2 

o 

l+zL’ 1 

1 ( 

1 0 no 
CI - ‘zL2 I( ) a-‘k2(1 +zL2) qP ’ 

where CI E zL2 + k2( 1+ zL2). The amplification matrix is the product of the two 
matrices in this equation, and its eigenvalue, y, is determined by 

(ay)2- [a + k2](cfy) + ak2 = 0. 

Again along with unity, the variable eigenvalue of the new amplification matrix is 

k2 
Y=~L2+k2(1+~L2)r 

which lies within the unit interval for all values of r, regardless of k or L. Note that 
the value of unity is no longer trivial, as it indicates marginal stability for all 
parameter values. However, we do know that large timesteps are not numerically 
pathological, i.e., this part of the overall system is never unstable. The overall 
numerical stability will now be determined by the cascade processes in the non- 
linear convective terms, as it is impractical to evaluate these implicitly. 

Two notes must be pointed out. The first is that if the timestep is too large, the 
density fluctuations will exhibit too much adiabaticity. If r is not very much less 
than unity the factor rC -lZ2x2 can be appreciable inside the layer. Numerically, 
this factor controls adiabaticity, not C by itself. As z increases the fluctuations 
become more and more adiabatic until the results are no longer correct, even if 
there are no obvious problems with the scheme. Thus, one must still be sure to 
accurately resolve the parallel diffusion process within the hydrodynamic layer and 
where the fluctuations are appreciable even though this may not be necessary in 
other regions. This consideration limits the timestep to values on the order of 10m3 
(see tests below). The other note is that the order of operations is very important. 
The way in which the eliminations are made guarantees that the factor zL2 never 
appears by itself, but always in the form of zL*/( 1 + zL2). Thus, if zL2 is large the 
acting operator is of order unity. Cancellations between large terms are automatic 
rather than forced, and n will asymptotically relax to 4 rather than try to track it. If 
standard inversion of the block tridiagonal of 2 x 2 elements is attempted this 
benefit will be lost. 

If the magnetic shear were very strong [LJL, N O(l)] it would be necessary to 
do this with the sound wave as well. The procedure works the same way as for the 
simplified system analysed above. The first elimination is of u in favor of ~1, after 
which the procedure continues in the preceding illustration. In actual practice, 
however, this is not necessary in cases of tokamak ordering [(l, C-1’2) > LJL,], 
and in this work the sound wave is left explicit and is simply added into no. Note 
that the parallel viscosity, a homogeneous term, is still evaluated implicitly. 
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The difference equations which represent Eqs. (2)(4) are 

v~qkv~~“-(v.w~~y-Tc--12x2(n-q4)+zD(v~~), 

n=no-(V~Vn)~-zC-122X2(n-#)-i~z~o-iir(L,/L,)Exzro+ZD(M), 

z4 = u” - (v * vuy - it(L,/L,) ZxnO - qd2x2u -t- la(u), 

where the superscript “p” refers to the predictor-corrector used on the nonlinear 
convection terms. Although the sound wave terms are labelled with the “0” they are 
evaluated after the convection operators. 

The first stage is the convection operation. This is a standard predictor-corrector 
[13] with a predictor step of O.%, 

n* = no - 0.5z(v .Vn)O, @aI 
np = no - z(v . VIZ)*, @b3 

for each quantity, Vt&‘, 9, UP, with d* being obtained from the tridiagonal inver- 
sion of VT on V:C$*. Next, the shear and drive terms are evaluated: 

ns = np - izlqS” - iz(L,/L,) lxup, @cl 

v:$P= 
TC - ‘1 2x2ns 

1 -I- zc - l12x2 -v:Pi 

us = (1 + rp12x2))’ [u” - iz(L,/L,) lxnP]. @e) 

In Eq. (k), C#J appears as 4”; this is in order to save an extra tridiagonal operation 
after the evaluation of Eq. (Sb). It does not affect the performance of the scheme, as 
this term is much “slower” than the shear terms. The viscous operator is inverte 
here immediately after the explicit evaluations have caused the most trouble at 
high I: 

nd= (1 -zD)-’ IZ’, W 

for each quantity, Vcd”, nd, ud. Note that ud is u at the current timestep as 
the scheme has finished for that quantity. This is followed by the implicit shear 
inversion and the unfolding illustrated on the simplified system above: 

4=( 1 + zc zc - ‘1 - 2x2 rl2X2 -1 -v: 1 v:qbd, 

V?Cj= d-‘12x2 d-V?dd, 
1 f.TC-‘i2X2 
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The step order is very important, for because the shear inversion scheme is 
marginally stable, the sound waves are explicit, and the predictor-corrector is 
actually mildly unstable the inversion of D must occur exactly where it has been 
put. Anywhere else it is unable to stop the growth of small scale disturbances unless 
it is made too large. Because of this, direct operation by V$ must be avoided. Thus, 
V: 4 is obtained instead from Eq. (Sh). The density is then allowed to follow 4 
without interference from other operators. Such interference would be the case if D 
were inverted at the very last. 

In Eqs. (8a), (8b) the v .V terms are evaluated in xy-space, i.e., the code is 
pseudospectral in y. The problem of aliasing [ 141 in the convolutions is avoided by 
restricting the total number of k,-modes to +N,,, where NY is the number of grid 
points in the y-direction. The number of modes is actually not ZN, but half that as a 
result of the reality condition in which 4-[(x) is replaced by the complex conjugate 
of d{(x). Thus, the grid will be N, x NY in real space, or N, x &NY in xk,-space. 

Again, because of the x2 in the shear terms the scheme is finite-differenced in the 
x-direction, as nothing would be gained by transforming to k,k,-space, changing 
the x2 term into a d2/ak: operator. On the other hand, it may be desirable to do the 
D inversions in k,k,-space (assuming no spatial dependence in D), especially if the 
finite-difference approximation to D involves more than three diagonals in the 
matrix, as is the case if a hyperviscosity is used. (Note that the localisation confers 
the benefits of zero-packing for the FFT operations.) In this paper we use the 
hyperviscosity, so that 

D= -pJ;, (9) 

keeping the dissipation range to the highest k’s (see below and the next section). On 
the other hand, it is necessary to invert the V: operator of Eqs. (8b), (8g) in 
xk,-space as a tridiagonal matrix to avoid difficulty with boundary conditions, 
which are built-in with the matrix but difficult to handle in k,k,-space. This creates 
additional numerical dissipation which must be lived with because the difficulty of 
localising the IK N 1 modes prohibits the latter approach. 

The problem with x +-+ k, transforms is that a constant grid spacing must be 
used. In some cases this has the undesirable effect of forcing high resolution 
everywhere if it is needed anywhere. One must simply decide whether this disadvan- 
tage is outweighed by the beneficial effects of the hyperviscosity. In the drift-wave 
case it is, because of the need for a nearly inviscid intermediate range in the spec- 
trum. In any case, the high resolution (see next section) is necessary in the high- 
shear regions to resolve the accompanying outgoing waves. For the grid size used 
here the FFTs used in the inversion of D have been seen to take roughly the same 
computational effort as the tridiagonal inversions. 

The code was initially run with a diffusion operator in xk,-space of 

D=pJ4V2,, (10) 
so that xk,-space needed only be left when doing the pseudospectral convolutions 
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in the nonlinear v .V operator. This gave a sort of average of k4, roughly sixth Q 
in k, and second order in k,. However, in shear-flow tests this did not adequ 
cut off the k,-spectrum, so the more isotropic hyperviscosity is now used. 
estimation of viscous Reynolds numbers (nonlinear convection/viscous damp 
for such an operator is also made easier (see Ref. [1.5]). Indeed, the D operator is 
necessary for k,, not ky . Shear dissipation is more than adequate in cutting off the 
k,,-spectrum at small scales. The fact that shear dissipation is in balance with driv- 
ing everywhere in the spectrum indicates that the Reynolds number with respect to 
magnetic shear is of order unity. However, there is no k,-dissipation in the 
operator, so D is needed to do the truncation in k,. Also, bad behaviour at high 
will affect high-k,, as well due to the tendency of small-scale turbulence to 
isotropise. One might like an even steeper cutoff resulting from an even higher 
order operator, but this can lead to irregularities in the spectrum near the D,- 1 
boundary (at IK N ,u; 1/X, using D = P~(V:)“‘~). On the other hand, the more 
physical Newtonian viscosity, 

does not work because the dissipation range in k-space is too broad to achieve higk 
viscous Reynolds numbers at the intermediate scales. That is, it is undesirable to 
have the artificial D operator play much of a role in the physics of the turbulent 
structures, which in a real plasma are practically inviscid. The hypervis~~sity 
in Eq. (9) was chosen as an adequate compromise, and has been used for 
similar reasons in the study of coherent structures in decaying Navier-Stokes 
turbulence [ 161. 

It is possible, but not necessary, to have differing perpendicular diffusion 
operators in each of the equations. This has been tried in using a smaller “particle 
diffusion coefficient” (the D in Eq. (3)) than the “perpendicular viscosity,” in 
titular, to set the former to zero. It was found not to be sufficient only to hav 
artificial diffusion in one or some of the equations, e.g., the neglect of D in Eq. (3) 
causes problems for the density spectrum even though that for the potential is well 
behaved at high 1. Additionally, this also causes spur us driving, because extra 
viscosity in Eq. (2) gives rise to more lag between n an 4, i.e., m0re extraction of 
energy from the density gradient. Since D is artificial, it is simplest to use the sa 
operator in all the equations as this saves space in the computer. One need on.liy 
be sure that the diffusion is not allowed to play any role in the physics of the 
turbulence. 

The scheme outlined in this section was evolved to handle the 
drift-wave turbulence, but the general method should be useful i 
separate equations are coupled by linear terms which would contribute decisively to 
numerical instability were they to be evaluated at the previous timestep. If 
coupling terms are nonlinear, as in electromagnetic codes where V,, is anot 
convolution operator, such a simple solution as this would not work. A more 
complicated scheme such as the semi-implicit method used in 3D 
simulations [I 171 would have to be resorted to. 
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IV. RESOLUTION CONSIDERATION 

The question of k-space resolution in numerical treatments of drift-wave tur- 
bulence is very important but often neglected. In particular, there are three space 
scales in the problem which must be separated. These are the macroscopic gradient 
scale or experimental system size, represented here by k; r or L,, the most probable 
structure size, or the intermediate scale here typically on the order of a ps, and the 
smallest scales at which the numerical or artificial dissipation is acting to truncate 
the spectrum. Truncation is necessary because of the finite size of computer core 
memory, but the cascade process acts to pile energy at the highest k’s since there 
are none higher to which it can be transferred. The operator D serves to remedy 
this by dissipating the extra energy in lieu of the cascading. However, a real plasma 
has such a high viscous Reynolds number that any important scales are practically 
inviscid. This is the reason the ps scales must be kept out of the dissipation range of 
D. Most previous drift-wave computations have neglected this consideration 
[S-lo], leading to the erroneous conclusion that only the largest scales play 
important roles in the physics. It is also important to separate the p, scales from the 
largest to allow any structures which may form to interact on the largest scales. 

What is meant here by “viscous Reynolds number” is a measure of the relative 
sizes of driving or convection and the artificial diffusion term containing D in a 
given equation. The real Reynolds number of the entire system will involve a com- 
plicated combination of perpendicular and parallel dissipation and the various 
couplings. Since one looks only for some idea of the scales at which the D terms 
begin to have importance, the viscous Reynolds number is defined in normalised 
units as oJ,D~(K)~ for the hyperviscosity in Eq. (9), where the numerator enters as 
a result of normalising the D operator with respect to kouD, and 1 is the mode num- 
ber. This is in a sense a “linear” Reynolds number because we have defined it to be 
amplitude-independent. Using the linear frequency o1 = I/ [ 1 + (ZK)‘], one arrives at 
the definition [(~~1~K~)(l+ Z2K2)]-’ for the viscous Reynolds number at the Zth 
mode. (Or, (pLZ5K6)-’ for lK91.) This has been found very useful in locating the 
dissipation range boundary in k,-space for the purpose of keeping it away from the 
important scales. The computations presented in Section VI (except for the test of 
,u,-dependence) were all performed with pL = lo-’ and K= 0.1, setting the viscous 
Reynolds number to unity at mode 63 (roughly the viscous dissipation range boun- 
dary) and 5 x lo3 at mode 10 (also the k,ps= 1 point). The grid resolution is 
256 x 256, which limits the k,-spectrum to 85 modes so as to automatically avoid 
the aforementioned aliasing arising from the convolution operations in the non- 
linear coupling terms. These smallest scales are highly dissipative under the D 
operator used. At this size the form of D (either of Eqs. (9), (10)) has been seen to 
have no important effect on the k,-spectrum up to the viscous dissipation range, 
which is what is desired. Tests involving the size of D are presented in Section VI. 

In the x-direction it is important to resolve the smallest of d, and ps with of 
order 10 points and still keep reasonable separation between all the x-scales in the 
problem. This is needed in the adiabatic regions as well to resolve the outgoing 
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waves present in the system. The wall at xL, where the fields are assumed to vanish 
must be sufficiently far from the resonance layer that the forced vanishing of all the 
fields does not reflect outwardly propagating wave energy back into the system. The 
drift waves couple to ion sound waves near x = LJL,, the point at which k,, c, is 
equal to the diamagnetic drift .frequency. The sound waves then carry energy o 
and begin to dump it near xi = /.- “’ the point at which the drift frequency is equal , 
to the parallel dissipation rate of the outgoing waves, ~,,kf,. All of these processes 
must be well contained within the walls. This requires in practice that xt be at least 
twice xi. Tests have shown 256 points to be the minimum to achieve these con- 
ditions (see Section VI). Most previous treatments have avoided this derna~di~~ 
requirement by neglecting magnetic shear, so that an isotropic spectral code may be 
used [9, lo]. The problem, of course, is that the physics of spatially varying sh 
present in all real systems, are invisible to such a treatment. Note lastly that 
need for high resolution is what creates such a problem for numerical stability in 
the first place. The shear terms in Eqs. (2~(4) would not be so difficult if only a few 
modes were kept. 

V. COHERENCE DIAGNOSTICS 

Before discussing the results and numerical tests of the code, we digress with a 
few words on coherent structures in the turbulence. These are by definition any 
recognisable forms in one or more of the fields that persist for a long time com- 
pared to the correlation time of the turbulent fluctuations. In a recent study of 
decaying Navier-Stokes turbulence, coherent vortices were observed to form in an 
initially Gaussian-randomised fluctuation field and then persist throughout the 
computations [ 161, some of which were carried out for tens of correlation times. It 
is important to use a system of numerical diagnostics in studying these structures 
due to the fact that the eye is a notoriously poor judge on whether or not a given 
distribution is random. One such test that is easily implemented is the kurtosis, or 
flatness, defined for zero-mean fluctuations as the ratio of the fourth moment to the 
square of the second: Ku(d) - (#4)/(~2)2, where the angle brackets represent an 
ensemble average [lg]. For time coherence information the time average is used; 
for spatial intermittency, the averaging becomes an integration over all space. 
Suitably normalised, this has the value three for a perfectly random, Gaussian 
distribution. This becomes a very useful diagnostic when the phenomenon un 
study is not in a stationary state, in which case time correlation measurements 
very difficult. A given structure can be followed in successive contour plots, and 
kurtosis measurement is used to determine its self-coherence. 

Unfortunately, the qualification “suitably normalised” is significant when dealing 
with localised fluctuations. Clearly, localisation introduces a non-random element 
into their distribution. Consider, for example, a case of perfect localisation, i.e., fluc- 
tuations 4(x, y) which are nonzero only within some window x < xW. As long as 
the averages in the definition of Ku(d) include the entire region ( -xW, x,), the 
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signal will be proportional to the integration boundary because of the nor- 
malisation of the integrals. In practice, the kurtosis measurement must be compared 
with that of a fluctuation distribution known to be random-phase. The initial state 
(see the next section) may be used for this. What one is left with is a rather 
approximate indication of self-coherence rather than a precise diagnostic. We shall 
see, however, that the situation will be reasonably clear. The kurtosis measurements 
in this work were all done with an integration limit of 10.0 in the x-direction, i.e., 
well outside the region within which the fluctuations are well confined. 

VI. NUMERICAL TESTS AND RESULTS 

Prior to conducting tests on the full nonlinear scheme the shear term part of the 
algorithm was tested in a series of linear runs. This entails the scheme as outlined in 
Eqs. (8c)-(8i), that is, leaving out the convection operators. Linear runs are 
initialised with a spatial Gaussian for 4, with n = 4 and u = (LJL,) x4, the latter a 
natural form suggested by Eq. (4). These are carried out until all the growth rates, 
defined as +E;’ aE@t for each ith piece as well as the total energy, converge to 
equal values. (The factor of two is due to the fact that the Ets are proportional to 
the amplitude squared.) The total energy is defined as 

E~~((V~qSl~)+++z~)+~(u~), (11) 

where the angle brackets indicate integrations over all space, the form of which are 
(4) 5 J”4,, dx Jr, (&/2nM. Th e energy conservation law is derived by operating 
on Eq. (11) with E-‘(a/at) and using the right sides of Eqs. (2t(4) to evaluate the 
derivatives: 

Y +C-‘(lV,,(~-6)12)+~(IV,,~12) +O(pL), (12) 1 
where Y error represents the growth rate of spurious energy. We may drop the D 
terms since we are interested only in appreciable errors. It is sufficient to ensure that 
Y errOr 5 O(p,). The three averaged terms represent the energy extracted from the 
density gradient, resistive dissipation in the hydrodynamic region, and Landau 
damping of outgoing sound waves, respectively. Equation (12) is thus used to 
measure the energy conserving capability of Eqs. (8a)-(8i). 

We mention “growth rates” because in linear cases it is necessary to drive the 
equations with a multiplier of (1 + iyd) on the density gradient drive term. The 
initial state can be thought of as a superposition of the actual eigenfunction and an 
unwanted addition. The runs will only converge if the eigenfunction grows faster 
than or damps more slowly than the rest of the initial state. Because of the presence 
of a free energy source (the density gradient) any spurious relation between n and 4 
can cause the unwanted piece to win. Generally, if the eigenmode has an 
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appreciable growth rate it will win and the run will converge. However, a damped 
eigenmode will lose. Thus, it must be driven. Comparison with a result from an 
analysis or a shooting code may be done after the drive is subtracted. The mul- 
tiplier is in effect an addition of a complex part to the diamagnetic frequency, so it 
has the correct form, since the mode frequency is close to o, in the first place. 
(Note that driving is unnecessary in the nonlinear regime because the t~rbu~~~t 
convection dominates the character of the fluctuations and so long as C”* is suf- 
ficiently less than L,/L, this is not very sensitive to the outgoing waves.) Strictly 
speaking, this will work only if (yd, yL) 4 co* and K$ 1 (yL is the actual linear 
growth rate). However, the first requirement is not too severe, as the following 
comparison shows. 

Figure 1 displays the results of a series of linear runs with L,/Ls = 0.2, K = 
p =0.02, xL = 20.0, ;ul = 10w3, a n t d h e timestep T = 10e3. The solid line gives 
shooting code determinations of yL for 43 values of C [19]. The dots are the results 
from the runs. A driving of yd= 0.4 was used for all runs except C = 3.0 and 5.0 for 
which yd= 0.5 and C= 10.0 for which it was 0.6. The y&s were then subtracted from 
the resulting growth rates to give the values of yL indicated by the dots. ver a 
wide range of C the initial value scheme gives very accurate results which begin to 
fail only with insufficient resolution (C < 0.1) or sound wave damping (C Z 3, as 
there is enough coupling to sound waves to defeat localisation within xL). 

We may further check the accuracy of the implicit scheme by varying the 
timestep on the C= 1.0 run between 1O-5 and lo-‘. The results of this test appear 

YL 
0.0 - I 

FIG. 1. Comparison of linear growth rates (yL) obtained from the implicit scheme (dots) and from a 
shooting code (line). See text for explanation of extraction of damping rates from the initial-value 
scheme. 
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in Fig. 2. A driving of yd= 0.4 was used for each case. Note the very small interval 
represented by the ordinate scale. Very good convergence is seen for r < 10m3, the 
value normally used. 

To ensure that the placement of the boundary (x=xL) does not influence the 
results we vary the value of xL on the C= 1.0 run of Fig. 1 between 10.0 and 50.0. 
The resulting damping rates are seen in Fig. 3. Precise convergence is seen for 
xL > 20.0. These results were identical to four decimal places except for the failure 
at xL = 10.0. Since the ion resonant damping point is near x = 7.0 this is due to lack 
of sufficient space for mode localisation. Thus, we see the need to keep the boun- 
dary at least twice as far from the resonant surface as the ion damping point. The 
conservation of energy for the xL = 50.0 case was measured using Eq. (12), and 
Y error was found to be of order few x 10-4. Satisfied by these test we now proceed 
with tests of the entire algorithm on nonlinear runs. 

The computations are initialised with 4 and II set equal to each other, and u set 
to (&IL,) x4. The initial field for 4 is an isotropic, random-phase Gaussian 
realisation with an amplitude spectrum given by 141 k cc k/Cl -t (k~,)~], multiplied 
by a spatial gaussian envelope to reflect localisation to the resonant surface due to 
magnetic shear, then normalised so that the rms velocity fluctuation is 2.0, i.e., in 
the nonlinear regime. A picture of this distribution and its spectrum is shown in 
Fig. 4. It has a measured kurtosis of KU(~) = 10, which is used as a benchmark for 
these measurements. The fluctuations are not expected to remain adiabatic for long, 
as the density gradient and nonlinear couplings act to force n and 4 apart, but this 
is a reasonable initial state because the most dangerous terms in Eqs. (2)-(4) cancel 
initially, allowing the fields to find the appropriate time-dependent solution with 
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FIG. 2. Convergence check of yr against the timestep (7) in the linear scheme. Note the sharp change 
for z > 10M3. 
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-0.33 
0.0 20.0 40.0 60.0 

FIG. 3. Convergence check of yL against the boundary (xL) in the hnear scheme. Values of .xL 
between 20.0 and 50.0 gave identical results. 

minimal violence. Coherent structures are not assumed at the beginning but may 
form as the fields evolve. This initial state is then advanced according to the 
complete algorithm in Eqs. @a)-(%). 

The typical run consists of a rapid transient phase in which the fluctuations 
adjust to a state in which the nonadiabatic piece of the density response, h, has 
risen from zero and become confined within the electron conduction channel, and 

2P 

Y 

?I- 

0 

I 

)2 

FIG. 4. Contours showing the form of the initial fluctuation distribution 4(x, y). Solid contours 
indicate positive values; dotted, negative. The interval is linear. The amplitude energy spectrum is also 
shown; angle brackets reflect an integration over x. I is the mode number. Ku(qS) = 10. 
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then a long decay phase characterised by the dominance of a few large coherent 
structures in h. The basic features of one such run are depicted in Fig. 5. This was 
carried out with C= 1.0, L,/L,=O.2, K=O.l, ~=0.02, x,=20.0, p1 = 10V3, and 
the timestep r = 10m3. The fluctuation contours of 4, n, and h are shown at t = 8.0. 
The zero contour is suppressed for clarity. The most obvious property is the general 
localisation to the vicinity of the resonant surface. This is the strongest for h, as 
electron parallel diffusion strongly damps this quantity outside the electron conduc- 
tion channel. Localisation in II and 4 is due to overall magnetic shear damping. The 
structure in h is also much more complicated than that in either n or 4. (Note the 
linking of the small structures into the large ones.) This is borne out by the kurtosis 
measurements, which yield Ku(h) = 29, while Ku(b) = 10 and Ku(n) = 11 (that of 
the randomised initial state is 10). More important than the absolute values is the 
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FIG. 5. Contours (as in previous figure) and spectra of a typical run (C= 1, see text). Note the scale 
expansion for clarity in the nonadiabatic density (h) contours. I is the mode number. Snapshot at t = 8.0. 
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fact that the kurtosis in h is a factor of 3 or so higher than that in either yz or 4. 
esides the obvious self-coherence, this indicates that the character of h is so 

ferent from the other fields that a simple phase relation between n and 4 like that in 
Eq. (1) cannot suffice. The actual relation is highly spatially dependent, as is clear 
from the adiabaticity of the fluctuations in the high-shear regions. This 
demonstrates the need for a way to correctly and completely handle the Vf, terms in 
Eqs. (2)-(4), as they will be present in any drift-wave system consisting of both 
high- and low-shear regions. The energy conservation of just the nonlinear terms 
was monitored by measuring (#“[v.V(V:4)]*), (n’(v.Vn)*), and (u”(v.Vu)*c) 
in Eqs. (8a), (8b), where the superscript “0” refers to evaluation at the immediately 
preceding timestep and “*” to the second evaluation d the convection operators. 
These were found to fluctuate around zero with an amplitude of order 1W7. 

The importance of the intermediate scales is shown by the second half of Fig. 5, 
in which appear the spectra of 4, IZ, and h. Superimposed upon the mid range 
background of the density spectrum is a pronounced maximum in the region 
k,p, 2 1. The strength of the largest scale reflects the combination of the smaller 
structures into larger ones. The latter feature is most evident in h, as the coherent 
structures there are the most dominant. This is where the necessity of high 
resolution and low dissipation enters, for if either were relaxed these phenomena 
would not be correctly reproduced. The roles of the intermediate scales would be 
missed and the conclusion that the largest scales are the only important ones woul 
be reached. However, since the present purpose is the test of a numerical scheme, 

FIG. 6. Effect on the total energy (E) spectrum of varying the timestep. Individual spectra are 
labelled with the marker shown according to the value of z used. I is the mode number. 
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further comment on the physics issues of the turbulence is deferred to later work 
currently under preparation. 

To test the numerics the fields at t = 6.0 were pulled from the above run and used 
in initial conditions for short test runs in which r, pL, and xL were varied. A con- 
vergence test on the timestep was first performed. The fluctuations at t = 6.0 were 
started in four runs with r’s of 10m2, 3 x 10-3, 10e3, and 3 x 10V4, each carried for 
two w;‘-times. The total energy spectra at the end of these runs are shown in 
Fig. 6, superposed upon one another. The spectra are labelled with markers 
corresponding as shown to the above timesteps. They are in good agreement at all 
scales up to slight departures for r = 10 - 2. The time dependence is seen in the 
evolution curves for the total energy growth rate, which appear in Fig. 7, labelled as 
in the previous figure. As the timestep becomes larger the curves lose convergence, 
and while the overall trend is maintained, there is less tendency to damp. Con- 
vergence is lost for z > 10-3, and it is lost more severely than in the linear regime 
(Fig. 2). This is not, however, due to problems with the nonlinear terms. Higher-Z 
linear modes are responsible. We are plotting the energy growth rates, so each 
curve has a constant (linear) and a variable (nonlinear) piece. Since the shape of 
the curves is nearly independent of z, the linear numerics (Eqs. (SC)-(8i)) are the 
limiting factor. Again one can see that too large a timestep results in too much 
adiabaticity and thus less tendency to damp. The second-order accuracy of the non- 
linear operations prevents any problems with them, as is also suggested by the 
higher degree of energy conservation. Due to the linear terms, the optimum value 
for timestep is still 10 -3 

0.1 

0.0 

-0.1 

FIG. 7. The same runs as in Fig. 6, comparing the nonlinear energy growth rates. Convergence is 
attained for z < 10e3. 
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The next test involved the same set-up for the timestep test except that the 
parameter varied was pL, which took the four values lo-‘, lo-‘, 10e4, and IO-“. 
The total energy spectra for each of these runs are compared in Fig. 8, which uses 
the same labelling scheme as in Fig. 6. As expected, most of the difference is at the 
highest mode numbers. Excepting the ,ul = lo-’ case, divergence is confined below 
the lop3 level of the spectrum. For p1 d low4 the high E’s are not sufficiently dam- 
ped, and the runs will eventually become unstable due to pile-up of energy in t 
part of k,-space. The reason that pL is not set higher than 10e3 is also see 
Fig. 9, in which the total energy decay rates for the different pL, values are com- 
pared. After the initial adjustment period, the decay rate becomes independent of 
p, for ,u~ < 10P3. However, the value lo-’ changes the energy growth curve con- 
siderably. Also, as seen in Fig. 8, this large a pL has too much effect on the s 
trum for modes I>, 10, a region still containing appreciable energy. How 
smallest values have insufficient dissipation at high 1. Thus, the artificial 
coefficient is usually set at pi = 10m3. Moreover, this may be taken as 
that 256 points in the x-direction are marginally sufficient for the existe 
appreciable window between too much and too little viscosity. Simulation 
resolution will not have such a window at all. 

The final test concerns the effect of the boundary placement on the res The 
same run as before was used to compare xL values of 10.0, 20.0, and 40. ecall 
from this test on the linear scheme that the outgoing waves were adequately accom- 
modated for xL > 20.0 but that 10.0 was insufficient. Tbe total energy spectra for 
each of these runs are compared in Fig. 10, which uses the same labeliing scheme as 

FIG. 8. Effect on the total energy (E) spectrum of varying the artificial diffusion. Individual spectra 
are labelled with the marker shown according to the value of ,u,, used. 1 is the mode number. 
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FIG. 9. The same runs as in Fig. 8, comparing the nonlinear energy growth rates. Convergence is 
adequate for pI d 10u3. 

FIG. 10. Effect on the total energy (E) spectrum of varying the boundary. Individual spectra are 
labelled with the marker shown according to the value of xL used. I is the mode number. 
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in Fig. 6. Sharp convergence is seen between the lower two values. Small-scale dif- 
ferences in the x L = 40.0 case are attributable to the loss of resolution in the x-direc- 
tion caused by the scale expansion. When xL is doubled, the x-resolution is halved. 
In this case there is not sufficient breadth in the ,%,-spectrum for the cascade process 
and energy is piling up. This shows up in the k,-spectrum as a result of the ten- 
dency of small-scale turbulence to isotropise. The decay curves, shown in Fig. 11, 
lend support to this interpretation. The loss of resolution leads to a loss of con- 
vergence, shown by the xL = 40.0 curve. However, the other two converge very 
Thus, even though there is not enough room for the sound waves to dissipate for 
xL = 10.0 they are having little effect on the. energetics at this point. Recalling the 
test on the linear scheme, however, leaves x L = 20.0 as the only acceptable value. It 
alone satisfies both tests. This is another indication of marginal x-space resolution, 
another window which disappears for simulations with less resolution than that 
used here. 

An important point is made by the success of these tests. That is the question of 
time resolution of the various processes represented by the terms in the equati 
Paramount is the presence of both hydrodynamic and adiabatic regions withi 
computational domain. This would suggest that the resistive diffusion responsible 
for adiabatisation of the electron fluid need be time-resolved everywhere, or there 
should be too much dissipation resulting from the numerical scheme, the usual 
trade-off with implicit methods. That is not the case for the scheme of 
(ga)-@i)), for the reason that the implicit pieces are rmt blindly inverted toge 
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FIG. 31. The same runs as in Fig. 10, comparing the nonlinear energy growth rates. Non- 
convergence for xL = 40.0 is due to loss of resolution. 
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A stepping order is chosen which allows n and ~,4 to relax towards each other in the 
adiabatic region without trying to track each other reactively. The result is a 
scheme with very little inherent dissipation, as can be inferred from the tests on the 
linear growth rate and ,uL. In fact, when errors are made with the timestep the ten- 
dency is toward growth, as too large a r causes spurious adiabaticity rather than 
dissipation. Thus, the resistive dissipation process responsible for the adiabaticity 
need only be time-resolved where the fluctuation energy lives in x&“-space and 
where the fluctuations are not adiabatic. The other regions are taken care of 
automatically. Because of the amount of effort currently being put into drift-wave 
simulations with much less resolution than the present treatment [S-lo, 201 the 
importance of high resolution cannot be overstated. The present work contains 
adequate but marginal resolution, as is clearly shown by the tests. Anything less 
will either fail the convergence test or have so much artificial dissipation as to 
heavily influence the results. 

VII. DISCUSSION 

A split-timestep, implicit scheme for managing the problems which may come in 
high-resolution simulations of fluid plasma turbulence has been presented. The 
linear coupling terms which become large for the highest modes are stabilised by 
the numerical scheme which evaluates them in an implicit manner that does not 
depend on simultaneous inversion of the coupled equations. This carries the advan- 
tages of implicit algorithms without resorting to the inversion of very large block 
tridiagonal matrices, which would be needed because of the coupling between 
equations. Great advantage is taken of the fact that time resolution of the process 
represented by the coupling terms is necessary only where in xk,-space the fluc- 
tuations are appreciable. The splitting and operation order allow the use of a 
second-order accurate treatment where it is most needed: in the nonlinear con- 
volutions, which must be evaluated explicitly. The placement of the inversion of D 
allows it to have its desired effect on the spectrum without interfering with the can- 
cellation between the coupling terms where these are large. The present scheme very 
accurately represents the basic characteristics of drift-wave turbulence such as spec- 
tra, coherence properties, and spatial correlations as well as its time-dependent 
properties. It should be useful in making other problems tractable as well. 
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